
Aux-AIRL: End-to-End Self-Supervised Reward Learning
for Extrapolating beyond Suboptimal Demonstrations

Yuchen Cui * 1 Bo Liu * 1 Akanksha Saran 1 Stephen Giguere 1 Peter Stone 1 2 Scott Niekum 1

Abstract

Real-world human demonstrations are often sub-
optimal. How to extrapolate beyond suboptimal
demonstration is an important open research ques-
tion. In this ongoing work, we analyze the success
of a previous state-of-the-art self-supervised re-
ward learning method that requires four sequential
optimization steps, and propose a simple end-to-
end imitation learning method Aux-ARIL that ex-
trapolates from suboptimal demonstrations with-
out requiring multiple optimization steps.

1. Introduction
The advent of autonomous agents in our homes and work-
places is contingent on their ability to adapt in novel, varied,
and dynamic environments and learn new tasks from end-
users in these environments. A natural approach is for end-
users to teach learning agents by showing demonstrations of
how a task should be performed, which is known as learning
from demonstration (LfD) or imitation learning (Argall et al.,
2009). Typically, LfD algorithms assume users provide near
optimal demonstrations, which often does not hold true as
novice end-users can provide suboptimal demonstrations.

Instead of discarding suboptimal demonstrations, a recent
suite of self-supervised methods (Brown et al., 2019a;b;
Chen et al., 2020) have shown how to leverage this subop-
timal data to learn reward functions that can induce behav-
iors extrapolating beyond the demonstrator’s performance.
Brown et al. (2019b) propose disturbance-ranked reward
extrapolation (D-REX), which bootstraps off suboptimal
demonstrations to synthesize noise-injected trajectory roll-
outs. These synthesized trajectories with varying levels of
noise are then used to train an idealized reward function,
which is then used with reinforcement learning (RL) (Sutton
et al., 1998) to learn the final policy. By improving upon

*Equal contribution 1Department of Computer Science, Uni-
versity of Texas at Austin, Austin, Texas, USA 2Sony AI, USA.
Correspondence to: Yuchen Cui <yuchencui@utexas.edu>, Bo
Liu <bliu@cs.utexas.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

this approach, Chen et al. (2020) propose self-supervised
reward regression (SSRR), which leverages adversarial in-
verse reinforcement learning (AIRL) (Fu et al., 2017) to
generate synthetic demonstrations and then learn a reward
function that is aware of the amount of noise injected to
the policy during self-supervision. SSRR first fits the noise-
performance curve with a sigmoid function, and then re-
gresses a reward function to the resultant noise-performance
curve. They show that training a RL policy on this regressed
noise-aware reward function outperforms D-REX in three
Mujoco environments (Todorov et al., 2012).

In this work, we perform an in-depth study on the mecha-
nisms of SSRR. While we observe that most steps of SSRR
are essential to its success, we also find that the criterion
used to approach reward regression in this work may not be
the most optimal. Chen et al. (2020) demonstrate empiri-
cally that fitting a sigmoid function to the noise-performance
curve generates a regression target for reward functions that
will induce better-than-demonstrator agents, outperforming
D-REX. However, we learn that the sigmoid is not the only
function that can give a high extrapolation performance
and at the same time fitting the function parameters to the
AIRL reward is not a necessary step. We hypothesize what
is critical for extrapolation is to ensure is a steep drop of
reward estimation when noise is injected. We propose to
directly apply an auxiliary loss on AIRL (Fu et al., 2017),
which enforces trajectories without noise to have higher re-
wards than trajectories with noise. We show that this simple
auxiliary objective of creating a separation between the pre-
dicted performance of policies with and without noise, can
extrapolate beyond suboptimal demonstrations in a more ef-
ficient manner— replacing the multi-stage training process
of SSRR with one single step.

2. Background
In this section we introduce the problem setting and give an
overview of three related works.

2.1. Problem Setup

We consider sequential decision making problems modeled
as Markov Decision Processes (MDPs). An MDP is given

Aux-AIRL: End-to-End Self-Supervised Reward Learning for Extrapolating beyond Suboptimal Demonstrations

Figure 1. Comparison between SSRR and Aux-AIRL: SSRR requires four optimization steps, two involves interacting with the environ-
ment; Aux-AIRL leverages an auxiliary loss function and is trained end-to-end.

by the tuple 〈S,A, T,R, γ〉, where: S is a set of states; A
is a set of actions; T : S ×A× S → [0, 1] is the transition
dynamics; R : S → R is a reward function; γ ∈ [0, 1)
is the discount factor. A policy, π maps from states to a
probability distribution over actions. The expected value of
a policy π under reward function R is the expected return of
that policy and is denoted as V πR = E[

∑∞
t=0 γ

tR(st) | π].

In the problem of learning from demonstrations (LfD), an
MDP with out reward function is given, together with a set
of demonstration trajectories D = {τ1, τ2, . . . , τM}, where
τi = (s

(i)
0 , a

(i)
0 , s

(i)
1 , . . .) stores the consecutive states and

actions the demonstrator encounter. The objective is to
find a policy π that performs well under some unknown
reward R∗ that is only observable to the demonstrator. As
R∗ is hidden from the learner, typical LfD methods imitate
what the demonstrator does on states from D. When D is
suboptimal, it is in general impossible to extrapolate beyond
the demonstrator without any assumption about the data.

2.2. AIRL

Adversarial inverse reinforcement learning (AIRL) (Fu et al.,
2017) approaches imitation learning from optimal demon-
strations as part of a generative adversarial framework.
AIRL consists of a generator in the form of a policy op-
timized using RL methods, and a discriminator that serves
as the reward function. The policy optimization follows the
standard RL technique. Let π(a|s) denote the RL policy
and fθ(s, a) be the reward function parameterized by θ. The
discriminator D is given by Dθ(s, a) =

efθ(s,a)

efθ(s,a)+π(a|s) . Dθ

is trained with a loss function to differentiate the demonstra-
tion and the behavior generated from π:

LD(θ) = E(s,a)∼π[log(1−Dθ(s, a))]

− E(s,a)∼D[logDθ(s, a)]
(1)

The policy π(a|s) is alternatively trained along with Dθ to
imitate the expert by maximizing the psuedo-reward func-
tion given by R̂ = fθ(s, a).

2.3. D-REX

Disturbance-based reward extrapolation (D-REX) (Brown
et al., 2019a) is a deep inverse reinforcement learning
method leveraging ranking-based reward learning tech-

niques to extrapolate performance by automatically gen-
erating ranked trajectories. D-REX first learns a policy πBC
via behavioral cloning (BC) (Bain & Sommut, 1999; Ross
et al., 2011; Daftry et al., 2016) from given demonstrations.
Next, it adds noise to πBC to create noisy trajectories, as
given by Equation 2, where U is the uniform distribution
and η is the proportion of noise injection.

πη(a|s) = ηU(a) + (1− η)πBC(a|s) (2)

Finally, D-REX learns a reward function via supervised
learning over trajectory pairs using the pairwise ranking
loss according to Luce-Shepard rule (Luce, 2012).

L(θ) = − 1

|P|
∑

(i,j)∈P

log
e
∑
s∈τi Rθ(s)

e
∑
s∈τi

Rθ(s) + e
∑
s∈τj

Rθ(s)
.

(3)

The Luce-Shepard rule enforces that a trajectory with higher
noise level to be ranked lower. However, it does not account
for the amount of noise injection during reward learning or
the extent of suboptimality but rather just optimizes for an
ordinal relationship among suboptimal demonstrations.

2.4. SSRR

Chen et al. (2020) argue that the Luce-Shepard rule D-REX
uses results in a counterproductive inductive bias. They
show that a BC-based rollout generation for synthesizing
ranked, suboptimal demonstrations results in a reward func-
tion that is brittle against covariate shift. Instead of BC, they
use AIRL (Fu et al., 2017) to obtain an initial estimate of a
reward function and a policy. They overcome the limitations
of D-REX (Brown et al., 2019b) by specifically characteriz-
ing the relationship between the amount of noise injection
and policy performance (obtained via the reward function of
AIRL). The SSRR pipeline consists of four distinct optimiza-
tions (shown in Figure 1): (1) training a policy π AIRL and
reward function RAIRL (discriminator) via noisy AIRL and
generating data in a self-supervised manner. Noisy AIRL
injects noise into the AIRL generator π AIRL to expose the
reward function to a broader state space as visited by noisy
demonstrations; (2) characterizing noise-performance by
fitting a sigmoid function σ(η), where performance is com-
puted using RAIRL; (3) learning a reward function Rθ(s)

Aux-AIRL: End-to-End Self-Supervised Reward Learning for Extrapolating beyond Suboptimal Demonstrations

via regression to the sigmoid function from (2); and (4)
training a reinforcement learning agent using Rθ(s). Chen
et al. (2020) find that the noise-performance relationship is
well-characterized by a four parameter sigmoid function:

σ(η) =
c

1 + exp(−k(η − x0))
+ y0. (4)

The accuracy of the sigmoid fit is measured by finding
a correlation between the ground truth reward and the
learned reward function. Chen et al. (2020) find higher
correlation of their learned reward with ground truth (M =
0.996, SD = 0.004) compared to that learned via D-REX
(M = 0.812, SD = 0.153).

3. Methodology
3.1. In-depth study of SSRR

SSRR consists of a pipeline of optimization steps. To get
a better understanding of how the different design choices
of SSRR contribute to its performance gain, we conducted
an in-depth study on the different modules of the SSRR
pipeline. Chen et al. (2020) empirically demonstrated
SSRR’s effectiveness for extrapolating suboptimal demon-
strations. However, it is unclear why a sigmoid function
is the best choice as the regression target. We conducted
experiments in two continuous control tasks environments
in Mujoco (Todorov et al., 2012) and designed them to
specifically answer the following questions: Q1. Is it impor-
tant to fit a noise-based function as the target for regressing
the reward? Can we directly use RAIRL as the regression
target? Q2. Can we replace the sigmoid function with dif-
ferent functional forms? Q3. Is it necessary to fit function
parameters to RAIRL?

Q1. SSRR leverages RAIRL for fitting the noise-
performance curve σ(η) and then regresses a reward Rθ(s)
to the curve using a supervised loss on sub-trajectory-level
returns. The supervised training step itself may reshape the
reward function. To understand whether it is important to
regress to a noise-level-based target function, we conducted
experiments skipping step (2) of SSRR and directly train
a reward function Rprop. that regresses to the returns from
RAIRL, such that the learned reward function is proportional
to RAIRL at the return level. The resulting RL agents’ perfor-
mances in Hopper-V3 did not extrapolate beyond demonstra-
tions while the performances in HalfCheetah-V3 was worse
than π AIRL (see Table 4 in Appendix). The results of this ex-
periment show that using a noise-level based reward target
is important for extrapolation and we hypothesize that it is
because the learned AIRL reward from sub-optimal demon-
strations is too noisy, especially when evaluated on unseen
states. A T-SNE visualization of RAIRL based on state sam-
ples is shown in the Appendix (Figure 2). The supervised
learning technique does reshaped the reward distribution

of Rpropo. from RAIRL, however, it is “extrapolating” in a
wrong direction.

Q2. To test whether using a sigmoid function is necessary
to get the performance boost, we tested the SSRR pipeline
with different forms of the target regression function:

• Linear: l(η) = aη + b

• Quadratic: q(η) = aη2 + bη + c

• Exponential: e(η) = a exp(−bη) + c

We fit each of these functions to the noisy AIRL reward as
in SSRR. We found that these non-sigmoid functions also
give comparable performance for extrapolating from the
suboptimal demonstrations in both domains we tested. We
observe that the performance of SSRR has large variance
across runs. This instability comes from both the first step of
training AIRL and the last step of running RL. Therefore, for
our experiments, we fixed R AIRL and π AIRL after training
once, generated a single set of synthetic trajectories, and
only varied the regression target function to use in step (2).
The authors of SSRR selected one model’s performance to
report from 5 runs by testing the learned reward’s correlation
with ground-truth reward (Chen et al., 2020). However, this
approach is not practical since ground-truth reward is not
available for real-world tasks. Therefore, in our experiments,
we repeat each experiment three times and report the average
performance. As shown in Table 1, non-sigmoid functions
can generate comparable performances. See Appendix for
detailed results for each run (Tables 5-8).

Q3. To evaluate whether fitting function parameters is nec-
essary for the success of SSRR, we tested hand-picked
functions as the regression target. Specifically, we used
(x0=0,y0=2,k=5,c=−2) for sigmoid, (a=−1,b=1) for linear,
(a=1,b=−2,c=1) for quadratic, and (a=1,b=5,c=0) for expo-
nential function (see Figure 6a in Appendix for the shape of
the curves). We found these regression targets result in com-
parable (often better) performance than fitted noise curves
in HalfCheetah-V3 (Table 2), indicating that fitting the func-
tion parameters to R AIRL is not necessary for extrapolating
the performance from suboptimal demonstrations.

3.2. Aux-AIRL

Based on our study of SSRR, we found that the particular
form of the noise curve function is not critical, nor is the step
of fitting the function parameters to the noise-performance
curve. We hypothesize that the major reason SSRR (and D-
REX) can extrapolate is that the re-learned reward function
is constrained by the noise-performance curve, enforcing the
reward function to extrapolate in the direction that ensures
“noisier is worse”, while the reward learned just with noisy
AIRL can “extrapolate” in any arbitrary direction. Specif-
ically, the learned reward function guarantees to assign a
policy π a higher value than πη with noise level η > 0

Aux-AIRL: End-to-End Self-Supervised Reward Learning for Extrapolating beyond Suboptimal Demonstrations

Domain Metric Target Regression Function Form (fitted)
Sigmoid (SSRR) Linear Quadratic Exponential

HalfCheetah-V3
Avg. Return 1148.98 ±945.36 821.34 ±208.60 774.66 ±418.97 476.42 ±881.49

GT Corr. 0.965 0.934 0.956 0.952

Hopper-V3
Avg. Ret. 1916.72 ±102.36 2447.04 ±199.35 1630.26 ±339.61 2529.09 ±315.39
GT Corr. 0.948 0.966 0.949 0.966

Table 1. Ground truth reward (with standard error) and correlation coefficients of different target regression functions.

Target Regression Function Form (hand-picked)
Sigmoid Linear Quadratic Exponential
3375.67 4946.85 2520.87 2045.53
±638.00 ±514.95 ±798.11 ±1228.59
0.977 0.978 0.958 0.983

Table 2. Ground truth reward (with standard error) and correla-
tion coefficients of different hand-picked regression functions (no
fitting) in HalfCheetah-V3.

(V π > V π
η

). Therefore, a natural next step of investigation
is to directly apply this constraint on a reward learning al-
gorithm. To this end, we propose an auxiliary loss function
that leads to maximization of the performance gap between
a learning policy and its noisier variant. In particular, by
fixing a noise level η0, the objective is expressed as:

Laux(θ) = Eη≥η0
[
V π

η

θ

]
− Eη<η0

[
V π

η

θ

]
. (5)

According to Kakade & Langford (2002), we know that:

∀π1, π2, V π1 − V π2 = Eτ∼π1

[∞∑
t=0

γtAπ2(s, a)

]
, (6)

where τ = (s0, a0, s1, a1, . . .) denotes any roll-out trajec-
tory. Therefore, we can modify the objective in (5) to:

Laux(θ) = Eη≥η0
[
V π

η

θ − V πθ
]
− Eη<η0

[
V π

η

θ − V πθ
]

= Eη≥η0,τ∼πη
[∞∑
t=0

γtAπθ (s, a)
]

− Eη<η0,τ∼πη
[∞∑
t=0

γtAπθ (s, a)
]
.

(7)

Under the maximum causal entropy reinforcement learning,
as mentioned in AIRL (Fu et al., 2017), we have:

Aπθ (s, a) = Es′∼T (·|s,a)[fξ,φ(s, a, s
′)]

= Es′∼T (·|s,a)[gξ(s, a) + γhφ(s
′)− hφ(s)].

(8)

Here, gξ and hφ are learnable models for predicting the
reward as mentioned in Sec. 2.2 (e.g. θ = (ξ, φ)). Plugging
the value of Aπ back to equation (7) results in the final
auxiliary objective.

Method HalfCheetah-v3 Hopper-v3

Demonstration 1085 1130
AIRL (Fu et al., 2017) 1872.81±87.13 1188.93±31.00
Aux-AIRL 2191.64±103.34 1453.61±15.09

Table 3. Imitation learning performance of Aux-AIRL and AIRL
evaluated on the ground-truth reward throughout the training.

3.3. Preliminary Results

We tested our proposed simple one-step Aux-AIRL algo-
rithm in the same Mujoco task environments to compare its
performance with basline AIRL and SSRR. Table 3 shows
the resulting performance of Aux-AIRL comparing with
AIRL. Aux-AIRL extrapolates the demonstrations and out-
performs the AIRL baseline in both tasks. Aux-AIRL’s per-
formance is also comparable with SSRR in the HalfCheetah-
V3 domain (shown in Table 1). An experiment with varying
number of demonstrations in Hopper-V3 is reported in the
Appendix.

4. Conclusion and Future Work
In this paper we described an ongoing work, in which we
conducted an in-depth analysis of the state-of-the-art self-
supervised reward learning method SSRR. Using the in-
sights from our analysis, we propose an end-to-end method
Aux-AIRL that introduces a simple auxiliary loss in the
learning objective of AIRL’s discriminator. AIRL by it-
self is designed to learn only from optimal demonstrations.
Adding our auxiliary loss enforces a gap between optimal
and noisy rollouts of the learning agent’s policy and adapts
AIRL to leverage suboptimal demonstrations. Aux-AIRL
is simpler than SSRR and outperforms the baseline AIRL
method in two high-dimensional control tasks.

This work has several limitations to be addressed in future
work: (1) The task domains used share a similar objective
of ‘running faster’ and therefore is intuitively easy to ex-
trapolate. We plan to conduct a comprehensive analysis of
SSRR and Aux-AIRL on more domains with different char-
acteristics. (2) Despite the empirical success of Aux-AIRL,
we also notice that the extrapolation objective inherently
conflicts with AIRL’s imitation objective and it is impor-
tant to find a principled way to address such conflict. (3)
Currently we consider a hard noise level for Aux-AIRL and
maximize the performance gap between the learned policy

Aux-AIRL: End-to-End Self-Supervised Reward Learning for Extrapolating beyond Suboptimal Demonstrations

and its noisy variant. The amount of noise-level is not being
leveraged in the loss as SSRR does. Further incorporating
insights from the analysis of SSRR and design of an end-to-
end imitation learning method that extrapolates still remains
an open research question.

References
Argall, B. D., Chernova, S., Veloso, M., and Browning, B.

A survey of robot learning from demonstration. Robotics
and autonomous systems, 57(5):469–483, 2009.

Bain, M. and Sommut, C. A framework for behavioural
claning. Machine intelligence, 15(15):103, 1999.

Brown, D. S., Goo, W., Nagarajan, P., and Niekum, S. Ex-
trapolating beyond suboptimal demonstrations via inverse
reinforcement learning from observations. arXiv preprint
arXiv:1904.06387, 2019a.

Brown, D. S., Goo, W., and Niekum, S. Ranking-based
reward extrapolation without rankings. arXiv preprint
arXiv:1907.03976, 2019b.

Chen, L., Paleja, R., and Gombolay, M. Learning from
suboptimal demonstration via self-supervised reward re-
gression. arXiv preprint arXiv:2010.11723, 2020.

Daftry, S., Bagnell, J. A., and Hebert, M. Learning trans-
ferable policies for monocular reactive mav control. In
International Symposium on Experimental Robotics, pp.
3–11. Springer, 2016.

Fu, J., Luo, K., and Levine, S. Learning robust rewards
with adversarial inverse reinforcement learning. arXiv
preprint arXiv:1710.11248, 2017.

Kakade, S. and Langford, J. Approximately optimal ap-
proximate reinforcement learning. In In Proc. 19th In-
ternational Conference on Machine Learning. Citeseer,
2002.

Luce, R. D. Individual choice behavior: A theoretical
analysis. Courier Corporation, 2012.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-
tion learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pp.
627–635, 2011.

Sutton, R. S., Barto, A. G., et al. Introduction to reinforce-
ment learning, volume 135. MIT press Cambridge, 1998.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033. IEEE, 2012.

Aux-AIRL: End-to-End Self-Supervised Reward Learning for Extrapolating beyond Suboptimal Demonstrations

Reward GT Corr.

HalfCheetah-V3
-334.10 ± 0.62 0.21072828
-272.82 ± 0.60 0.5978017841
-248.42 ± 0.95 0.09366589742

Hopper-V3
1007.34 ± 0.60 0.9388336024
1023.48 ± 0.56 0.8237243993
1024.13 ± 0.55 0.8824499667

Table 4. Performance of SSRR-ablation (without noise-curve fitting) directly regressing to the AIRL reward (from three different runs).

Figure 2. T-SNE visualization of reward values for sampled states from HalfCheetah-V3 experiment of using RAIRL directly as regression
target (brighter yellow means higher reward). Ground truth reward is added as part of state representation such that the visualization is
smooth w.r.t. ground truth.

Figure 3. T-SNE visualization of different reward values for sampled states from HalfCheetah-V3 exp1 of using fitted regression target
functions (brighter yellow means higher reward). Ground truth reward is added as part of state representation such that the visualization is
smooth w.r.t. ground truth.

Figure 4. Correlation of learned reward functions with ground truth in HalfCheetah-v3 with a fixed AIRL reward function (exp1). Blue
dots are noise-injected training trajectories and green dots are unseen trajectories (same as used in SSRR paper).

Figure 5. The learning curves of AIRL and Aux-AIRL evaluated on the ground-truth reward throughout 6000 iterations of training. Each
experiment includes 3 independent runs and the shaded area indicates the standard error.

Aux-AIRL: End-to-End Self-Supervised Reward Learning for Extrapolating beyond Suboptimal Demonstrations

sigmoid (SSRR) linear quadratic exponential
exp1 1727.36 ± 45.69 499.03 ± 26.62 -59.69 ± 16.75 2236.85 ± 130.08
exp2 2418.70 ± 65.30 1211.92 ± 419.90 1259.00 ± 52.12 -485.88 ± 25.10
exp3 -699.12 ± 277.14 753.08 ± 82.01 1124.66 ± 53.06 -321.72 ± 5.76

Table 5. HalfCheetah performances for different fitting functions for each run of the experiment.

sigmoid (SSRR) linear quadratic exponential
exp1 0.970758729 0.9658376226 0.9592082657 0.9528530128
exp2 0.9547071844 0.91553707 0.9513416796 0.9478297329
exp3 0.9688677222 0.9201615698 0.9571505663 0.9558878951

Table 6. Reward correlations for HalfCheetah for each run of the experiment.

sigmoid (SSRR) linear quadratic exponential
exp1 2106.03 ± 6.24 2173.72 ± 9.61 981.47 ± 0.58 2813.03 ± 2.95
exp2 1889.56 ± 2.21 2835.08 ± 2.33 2128.72 ± 4.29 1899.33 ± 75.19
exp3 1754.58 ± 6.24 2332.32 ± 3.18 1780.60 ± 9.51 2874.91 ± 6.87

Table 7. Hopper performances for different fitting functions for each run of the experiment.

sigmoid (SSRR) linear quadratic exponential
exp1 0.9472535399 0.9601988176 0.9459690465 0.9602076292
exp2 0.9383132994 0.9660400965 0.9408339161 0.9660585813
exp3 0.9592074637 0.9724836503 0.9587196361 0.972498264

Table 8. Reward correlations for Hopper for each run of the experiment.

(a) Regression target functions. (b) Noise-performance profile. (c) Correlation with ground truth reward.

Figure 6. Characteristic plots (evaluating on unseen synthetic trajectories) for exp1 with hand-picked noise-curves in HalfCheetah-V3.

Figure 7. T-SNE visualization of learned rewards across states in synthetically generated trajectories for HalfCheetah-V3 exp1 using
hand-picked regression target functions (brighter yellow means higher reward).

Aux-AIRL: End-to-End Self-Supervised Reward Learning for Extrapolating beyond Suboptimal Demonstrations

sigmoid (hand-picked) linear (hand-picked) quadratic (hand-picked) exponential (hand-picked)
exp1 2409.36 ± 61.85 3919.41 ± 77.24 1422.98 ± 73.82 3033.82 ± 35.66
exp2 4580.51 ± 74.98 5398.97 ± 179.38 4073.27 ± 116.02 -396.89 ± 0.90
exp3 3137.15 ± 132.75 5522.18 ± 147.15 2066.36 ± 164.03 3499.65 ± 48.41

Table 9. Ground truth reward for different hand-picked regression functions across three runs in HalfCheetah-V3.

sigmoid (hand-picked) linear (hand-picked) quadratic (hand-picked) exponential (hand-picked)
exp1 0.9688677222 0.9708442371 0.9576270162 0.9803470237
exp2 0.9885478353 0.9843574358 0.9530998765 0.9829318125
exp3 0.9727246482 0.979322846 0.962053522 0.9866936429

Table 10. Correlation coefficients with ground truth for different hand-picked regression functions across three runs in HalfCheetah-V3.

#demo trajectories 1 2 3 4
Noisy-AIRL 1308.53 1175.82 1184.19 1188.93
Aux-AIRL 1667.66 1423.07 1468.55 1453.61

Table 11. Varying number of sub-optimal demos in Hopper-V3.

